EFIRON[®]

Optical Solution Provider

TECHNICAL DATA SHEET

EFIRON[®] Polymer Clad Series

XPC-365

Updated 17/07/07

FOSPIA CO., LTD 53, Jiwon-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Korea Tel) +82-31-365-3680 Fax) +82-31-365-3681 http://www.fospia.com

CONTENTS

A. MATERIAL DESCRIPTION

B. MATERIAL PROPERTIES

- 1. Liquid
- 2. Cured

A. MATERIAL DESCRIPTION

EFIRON[®] XPC-365 coating is a radiation-curable acrylate useful for polymer cladding making processes. EFIRON[®] XPC-365 coating has suitable glass transition temperature, rapid cure property, non-yellowing, thermal resistance, high oxidative and hydrolytic (moisture) stability, which are required by optical fiber industry applications.

1. CURING CONDITION

Minimum UV dose of EFIRON[®] XPC-365 for complete cure is 1000 mJ/cm^2 under a nitrogen environment. However, the minimum dosage is heavily dependent upon the thickness of the PC layer.

2. STORAGE

EFIRON[®] XPC-365 polymer cladding coating can polymerize under improper storage conditions. Store materials away from direct sunlight and presence of oxidizing agents and free radicals. Storage temperature range is between 10° C to 30° C.

3. PRECAUTION

EFIRON[®] XPC-365 polymer cladding coating materials can cause skin and eye irritation after contact. Therefore, avoid direct contact with these materials. If contact occurs, immediately rinse affected areas copiously with water.

4.<u>NOTES</u>

The information contained herein is believed to be reliable but is not to be taken as representation, warranty or guarantee and customers are urged to make their own tests.

B. MATERIAL PROPERTIES

1. LIQUID

Viscosity	at 25 °C	2,500 cPs
Density	at 20 °C	$1.52 \text{ g} \cdot \text{cm}^{-3}$
Refractive Index at 25℃, 589 nm		1.361
Surface Tension		In Testing

2. <u>CURED</u>

	1.265	
Refractive Index at 852 nm	1.365	
Glass Transition Temperature		
At Tan_delta Max	73 °C	
Secant Modulus		
At 2.5% Strain	100 MPa(In Testing)	
Tensile Strength at Break	8 MPa(In Testing)	
Elongation at Break	15.0 %(In Testing)	
Water Sensitivity (24 Hour, 50 °C)		
Weight Change	In testing	
Extractable	In testing	
Coefficient of Expansion		
Glassy Region	In testing	
Rubbery Region	In testing	
Shrinkage on Cure	<10.0 %	

The information contained herein is believed to be reliable but is not to be taken as a representation, warranty or Guarantee. Customers are urged to perform their own process and QC tests.